$[4+6]\pi$ Cycloadditions of Thiadiazole 1,1-Dioxides to 6-Dimethylaminofulvene: A Synthesis of a Diaza-azulene

By MASATO MORI and KEN KANEMATSU*

(Institute of Synthetic Organic Chemistry, Faculty of Pharmaceutical Sciences, Kyushu University 62, Fukuoka 812, Japan)

Summary Treatment of 2,5-bis(alkylsulphinyl)-1,3,4-thiadiazole 1,1-dioxides with 6-dimethylaminofulvene in acetone gave 5,6-diaza-azulenes in good yields; solvent effects support a concerted mechanism for the formation of the cycloadducts.

THERE is much interest in the $[4+6]\pi$ cycloaddition reactions of dienes and fulvenes. In particular, a new general azulene synthesis has been reported by the cycloadditions of thiophen 1,1-dioxides to 6-dimethylaminofulvene.¹ During the study of the frontier orbital-controlled cycloadditions of electron-accepting heterodienes,² we found that cycloaddition of the 1*H*-2,5-bis(alkylsulphinyl)-1,3,4-thiadiazole 1,1-dioxides with 6-dimethylaminofulvene gave the 4-alkylsulphinyl-7-dimethylaminosulphinyl-5,6diaza-azulenes.

The cycloaddition of the heterodiene $(1a)^{\dagger}$ with (2) at room temperature in acetone gave, after 0.5 h, the cycloadduct (3a), m.p. 179 °C, $C_{11}H_{13}N_3O_2S_2$ as yellow crystals in 60% yield, $M^+ m/z$ 283 (rel. int. 30%). The structure of (3a) was determined from the spectroscopic data. The resonances due to the dimethylamino-group, at δ 3.34 and 3.44, could be readily distinguished from that due to the methyl-group at δ 3.40, because of the characteristic broad

[†] Compounds (1a), (1b), and (1c) were obtained by oxidation of the corresponding 2,5-dialkylthio-1,3,4-thiadiazoles with H_2O_2 : (1a), $C_4H_6N_2O_4S_3$, m.p. 181 °C; (1b) $C_6H_{16}N_2O_4S_3$, m.p. 130.5 °C; and (1c) $C_{16}H_{14}N_2O_3S_3$, m.p. 203 °C. All compounds gave satisfactory analyses.

singlet signal of the dimethylamino-group The data indicate the loss of one methyl group originating from the 1:1 Furthermore, a signal at δ 9.00 is due to the adduct resonance of a ring proton, since the spectral pattern was unchanged by deuterium exchange This abnormal downfield signal must be due to 8-H, by comparison with the signal of corresponding ring proton of azulene ³ A comparison of the completely decoupled and off-resonance ¹³C-n m r spectra provides further evidence for the structure of diaza-azulene (3a) resonances due to 4 sp^2 carbons are observed at δ 122.1, 122.5, 128.1, and 153.5 ppm, each coupled with one proton, while resonances due to 4 sp² carbons at δ 113.2, 119.9, 161.7, and 171.5 ppm are assigned to nonprotonated carbons These chemical shifts were correlated with π -electron densities (Figure) calculated using the PPP SCF MO method ⁴ Similar reactions of (2) with the heterodiene (1b)[†] in acetone at room temperature overnight and the heterodiene (1c)[†] in chloroform at 50 °C for 7 h, afforded the diaza-azulenes (3b) ($C_{12}H_{15}N_3O_2S_2$, m p 161 °C) and (3c) (C₁₇H₁₇N₃O₂S₂, m p 179 °C), respectively, as yellow crystals in moderate yields The spectral data of these adducts [(3b) and (3c)] are similar overall to those of (3a), indicating their skeletal resemblance

Since the heterodienes (1a), (1b), and (1c) are electrondeficient dienes, the heterodiene LUMO-6-dimethylaminofulvene HOMO interaction is expected to be more predominant than the reverse interaction The small decrease in the rate of cycloaddition with increasing solvent polarity supports a concerted mechanism The solvent effect on the cycloaddition of (1a) with (2) at 34.1 °C is shown by the following rate constants 4.43×10^{-3} s⁻¹ in chloroform, $1{\cdot}35$ \times $10^{-3}\,{\rm s}^{-1}$ in acetone, and $2{\cdot}36$ \times $10^{-3}\,{\rm s}^{-1}$ in dimethyl sulphoxide

A reasonable mechanism for the formation of the diazaazulenes^{\ddagger} would involve the loss of SO₂ from the initial 1:1 adduct followed by a [1,5] sigmatropic shift and an S_N 2-like intramolecular attack by the dimethylamino-group on the alkylsulphinyl-group, and further subsequent elimination of an alkane as shown in the Scheme

We thank Miss Sachiko Kawasaki for experimental assistance

(Received, 16th May 1980, Com 533)

1 (a) S E Reiter, L C Dunn, and K N Houk, J Am Chem Soc, 1977, 99, 4199, (b) D Mukherjee, L C Dunn, and K N Houk,

² (a) T Sasaki, K Kanematsu, and K K Houk, *J Am Chem Soc*, 1877, 97, 4199, (b) *D* Makheljee, *E C Dullin*, and K K Houk, ² (a) T Sasaki, K Kanematsu, and T Kataoka *J Org Chem*, 1975, **40**, 1201, (b) depending on the reaction conditions, similar reaction of 6-dimethylaminofulvene with 3 6-diphenyl-1 2,3 4-tetrazine afforded 5-dialkylaminoethylene-1,4-diphenyl-5*H*-cyclo-penta[d]pyridazine (see M Bachmann and H Nenhoeffen *Justus Liebig's Ann Chem* 1979, 675)

³ D Meuche, B B Molloy, D H Reid, and E Heilbronner Helv Chim Acta 1963, 46, 2483 ⁴ R G Parr 'The Quantum Theory of Molecular Electronic Structure,' Benjamin, New York, 1963

[‡] There is no evidence that the positions of the SOR and SONMe₂ groups should be reversed in the 5,6-diaza-azulenes The $S_N 2$ like intramolecular attack of the dimethylamino-group on the alkylsulphinyl-group would be expected to be preferred to intermolecular addition which would lead to an alternative structure